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General comments (author response in bold) 
 
In this study, the authors utilize an ABM to evaluate timetables for undergraduate students 
returning to university. The results are of the study are expected (i.e. lower contacts -> lower 
number of infections). However, I do have a few questions. 
 
One issue with returning back to university is the large number of contacts in and out of lecture 
halls. Students will naturally mingle amongst friends, gather together for food, and engage in 
other social activities. As a consequence, any benefits gained from a specialized 
schedule/timetable will quickly erode. I am now wondering if it is possible to consider a 
strategy where students stay in one lecture hall (and surrounding area for social 
gathering/breaks) rather than moving about the university to different lecture halls? In this 
strategy, the professors will travel from room to room providing lectures instead of students 
switching lecture halls. This will make contact tracing easier should there be an infection. 
 
This sounds like an excellent idea. For our model we consider interactions within hallways 
during class changes and also consider outside transmission of the virus. Wherever 
possible, I would suspect institutions would try different strategies to minimize student 
contacts between classes such as single lecture halls (as suggested) and directed traffic in 
hallways (e.g., floor markings). Our model will likely result in more virus spread because of 
interactions in hallways between classes; however, this should not have a major impact 
the relative efficacy of different timetabling policies. 

 
I am wondering about model calibration and what exactly the transmission rate was. How 
was the transmission rate adjusted for presymptomatic and asymptomatic individuals. How 
was the transmission adjusted for outside transmission. Was there a probability that each 
individual could be infected (due to interaction at their household) before attending an in-
person lecture? 

 
We have added a section on validation to Appendix A (appendices pp. 9-11) where we 
describe the process used to calibrate and validate our model. The process involved 
performing a number of tests to investigate the model’s operational validity. 

 
The in-class transmission rate is based on the non-household secondary attack rate taken 
from the meta-analysis by Koh et al. (2020). We use the ratio of symptomatic vs. 
asymptomatic secondary attack rate from this study to adjust for asymptomatic contacts. 



Both of these numbers are used to determine the probability that each individual could be 
infected due to interactions in classes. 

 
The outside transmission rate (cases/100,000/week) was used to determine the 
probability of outside transmission for the cohort of 180 students. This number was taken 
from the Government of Alberta and Government of Canada COVID-19 reports. We have 
re- run our experiments with the current outside transmission rate (which is considerably 
higher than the outside transmission rate at the time when our first set of experiments 
were performed). 

 
The changes to Appendix A involved replacing Figure A.2 (appendices p. 10) with a more 
detailed figure showing the number of students susceptible, infected, and recovered over 
time. As well, we added Table A.2 (appendices p. 11) to provide sensitivity analysis results. As 
part of the sensitivity analysis, we looked at variations in the outside transmission rate. The 
model does show some sensitivity to this parameter. 
 
Reviewer 2: Dr. Kelsey Spence    Institution: Public Health Agency of Canada 
 
General comments (author response in bold) 
 
The authors present a modelling study describing the impact of various timetabling methods 
on reducing outbreaks of SARS-CoV-2 among students. They conclude that a combination of 
sustained non- pharmaceutical interventions (e.g. contact tracing) and smaller, less- frequent, 
in-person classes was the most effective strategy at reducing outbreak size. 
 
In general, the paper is interesting and very well written. The authors clearly explained the 
rationale for the study and provided good supporting evidence of using an engineering cohort 
given the importance of in-person skills building for accreditation. One suggestion that would 
improve the clarity of the paper is perhaps a sentence or two in the methods describing the 
timetabling options. It is described in the appendix, but it would allow readers to easily see 
which interventions were tested without referring to the appendix. Similarly, perhaps clearly 
stating which of the timetabling methods was the “best” in the abstract/interpretation 
session would help inform readers of the most optimal strategy to use. 
 
We have included additional information on the timetabling options in the “Methods” 
section. As well, we have provided more information in the captions for Table 2 (text p. 8 
and p. 15) and Figure 2 (text p. 7 and p. 18) to help the reader interpret the convention used 
for describing the timetabling options. 
 
I have a few comments about the model. It seems, based on the appendix, that this was a 
network-based model. I think that is appropriate given the use of timetabling, but further 
details should be provided on how contacts were assigned – e.g. completely at random, using a 
small-world algorithm, spatial allocation in a classroom, or certain number of connections? 
Also, were these contacts assumed to be stable over time in a given timetable session? I would 



also like to see some discussion of the impact of physical distancing on contacts – it is likely 
that any transition back to in-person learning will use masks and appropriate physical 
distancing (if possible) so that might impact the results. 
 
 
Thank you for these comments on the structure of the model. We have added material to 
the “Entities, States, and Variables” section of Appendix A (appendices pp. 1-2) to describe 
the relationship between student agents. The distance between students (i.e., the closeness 
of their personal relationships) are assigned randomly at the start of each simulation run 
and are assumed to be constant over the run (i.e., the 12.7 week term). The timetabling 
cohorts are established at the start of each simulation run by dividing the students evenly 
between the cohorts and assigning students to each cohort based on their proximity to each 
other. The assumption here is that “close relationships” are primarily related to students 
sharing the same classes; however, the random placement of students in the simulation 
world view results in some relationships to be closer than others (e.g., through friendships 
and shared interests) and opportunities for cross cohort interactions (e.g., in hallways 
between classes). 
 
We did not directly consider the impact of social distancing or the use of masks in the 
model. This would definitely be of interest in future versions of the model. Although these 
interventions would be used in real classroom situations, we took the view that they would 
have a consistent impact across all scenarios (i.e., reducing the secondary attack rate) and as 
a result, the relative difference between timetabling scenarios would be consistent with 
rates used in our model. 
 
Similarly, for the contact tracing intervention, what proportion of contacts are assumed to be 
identified by students? Analysis of community contact tracing data shows that cases cannot 
recall contacts with 100% accuracy, so it would likely overestimate the effectiveness if all 
contacts were traced and isolated. At any point are contacts quarantined before becoming 
symptomatic? 
 
In our model, we have assumed that students recall a maximum of 10 most recent contacts 
(this is represented by the “tracing depth” variable in the model). We agree that students 
cannot recall contacts with 100% accuracy and that this can lead to overestimates of the 
effectiveness of contact tracing. To check this, we performed a sensitivity analysis of the 
tracing depth parameter and did see a slight decrease in the mean number of students 
infected as tracing depth was varied from 2 contacts to 10 contacts. However, the difference 
in the results caused by varying the tracing depth was very small compared to the difference 
between no contact tracing (symptoms-based surveillance) and contact tracing (even when 
only using the 2 most recent contacts). We have added the results of this sensitivity analysis to 
Appendix A (appendices p. 11). 
 
In Table 1, it isn’t always clear how the parameter values are translated into the model. For 
example, how do the attack rate, secondary attack rate, and asymptomatic attack rate 
impact the probability of transmission? Is the “test duration” the time to test results, and 



what happens while a student is waiting for the results (e.g. do they go to class still?). What 
impact does the outside transmission rate have on the attack rate within the school? 
 
A new table, Table A.1 (appendices p. 4), and a short description has been provided in 
Appendix A to describe how the parameter estimates from Table 1 were incorporated in the 
model. We have also provided additional text in the “Model Overview” section on these 
parameters (text p. 5). 
 
The outside transmission rate (cases/100,000/week) was used to determine the 
probability of outside transmission for the cohort of 180 students. This number was taken 
from the Government of Alberta and Government of Canada COVID-19 reports. We have 
re- run our experiments with the current outside transmission rate (which is considerably 
higher than the outside transmission rate at the time when our first set of experiments 
were performed). 
 
In the appendix, it is mentioned that the observations are assumed to be normally 
distributed, but I would ask the authors to check the distribution of their results to assess 
whether the use of non-parametric statistical methods would be more appropriate. 
 
This assumption was used to estimate the number of simulation replications needed to 
achieve a desired 95% confidence interval width for our main output measure (number of 
student infected). We made this assumption based on the Central Limit Theorem: i.e., given 
that this output measure is the result of the combination of many independent random 
variables it should tend toward a normal distribution. For our experiments, we targeted a 
95% confidence interval with a width of 5%. Our simulation results appear to fall within this 
width: e.g., the Table 2 results have 95% CI widths in the range of 3.3% to 7.6%. 
 
Lastly, a minor comment about consistency – in some areas, the authors refer to the pathogen 
(SARS-CoV-2) and the disease (COVID- 19) interchangeably, this could be distinguished in the 
introduction and then one or the other can be used for the remainder of the paper. 
 
Thanks for this comment. We have updated the paper to refer to COVID-19. 


