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S tudies have consistently shown that short-term eleva-
tions in air pollution concentrations increase the risk 
of myocardial infarction (MI).1,2 Improving our 

understanding of the effects of short-term exposure to air 
pollution on MI may inform government policy and facilitate 
prevention by warning populations at risk. In Calgary, the 
major contributors to air pollution are transportation for 
nitrogen dioxide (NO2) and carbon monoxide (CO); 
construction for particulate matter less than 10 µm in diame-
ter (PM10) and particulate matter less than 2.5 µm in diameter 
(PM2.5); and industry for sulfur dioxide (SO2).3 The relatively 
higher air pollution regions, from a long-term exposure 
perspective, are mainly distributed along major traffic corri-
dors and close to industrial areas.4,5 Air pollution exposure 
studies that consider an average of air pollution levels over-
look the inherent spatial nature of air pollution.6,7

Historically, temporal analyses exploring the association 
between short-term exposure to air pollution and health 
outcomes have assumed that pollutants are spatially 
homogeneous.8–11 However, research has shown that spatial 
distribution patterns differ by pollutant.12 For example, it is 
widely recognized that ozone (O3) is relatively spatially 
homogenous because of consistent concentration levels and 
temporal fluctuations, whereas NO2 is spatially heterogeneous 
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Background: In studies showing associations between ambient air pollution and myocardial infarction (MI), data have been lacking 
on the inherent spatial variability of air pollution. The aim of this study was to determine whether the long-term spatial distribution of 
air pollution influences short-term temporal associations between air pollution and admission to hospital for MI. 

Methods: We identified adults living in Calgary who were admitted to hospital for an MI between 2004 and 2012. We evaluated associa-
tions between short-term exposure to air pollution (ozone [O3], nitrogen dioxide [NO2], sulfur dioxide [SO2], carbon monoxide [CO], particu-
late matter < 10 µm in diameter [PM10] and particulate matter < 2.5 µm in diameter [PM2.5]), and hospital admissions for MI using a time-
stratified, case-crossover study design. Air Quality Health Index (AQHI) scores were calculated from a composition of O3, NO2 and PM2.5. 
Conditional logistic regression models were stratified by low, medium and high levels of neighbourhood NO2 concentrations derived from 
land use regression models; results of these analyses are presented as odds ratios (ORs) with 95% confidence intervals (CIs).

Results: From 2004 to 2012, 6142 MIs were recorded in Calgary. Individuals living in neighbourhoods with higher long-term air pollution 
concentrations were more likely to be admitted to hospital for MI after short-term elevations in air pollution (e.g., 5-day average NO2: OR 
1.20, 95% CI 1.03–1.40, per interquartile range [IQR]) as compared with regions with lower air pollution (e.g., 5-day average NO2: OR 0.90, 
95% CI 0.78–1.04, per IQR). In high NO2 tertiles, the AQHI score was associated with MI (e.g., 5-day average OR 1.13, 95% CI 1.02–1.24, 
per IQR; 3-day average OR 1.13, 95% CI 1.04–1.23, per IQR).

Interpretation: Our results show that the effect of air pollution on hospital admissions for MI was stronger in areas with higher NO2 
concentrations than that in areas with lower NO2 concentrations. Individuals living in neighbourhoods with higher traffic-related pollution 
should be advised of the health risks and be attentive to special air quality warnings.
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because it is attributable to traffic emissions. If city-wide 
averages are used as air pollution estimates, they fail to consider 
the spatial variation within a city.11 The aim of this study was to 
determine whether the long-term spatial distribution of air 
pollution influences the short-term temporal associations 
between air pollution and MI.

Methods

Study design
We used a time-stratified, case-crossover study design to 
evaluate associations between a short-term exposure and the 
acute onset of a disease;13,14 this is an adaptation of the case–
control study in which cases serve as their own controls (Fig-
ure 1).15 This study design has been used extensively to 
characterize associations between day-to-day changes in air pol-
lution and adverse health events. Because within-individual 
comparisons are being made, confounding from time-
independent risk factors is controlled for by the design of the 
study. The case-crossover study design has been shown to effec-
tively control for confounders that are relatively stable in time, 
such as obesity, diabetes, smoking and socioeconomic status.16 

The case’s exposure at the index time (i.e., day of admis-
sion for MI) is compared with its exposure at control time 
intervals, which are chosen using a time-stratified design.17 
The index period is measured before the event and 
the control period is measured before and after the event.18–20 
For example, if the MI occurs on the second Wednesday in 

the month of July of 2011, then the referent period will be the 
other Wednesdays in July of 2011. The time-stratified 
approach matches the exposure by day of the week and month 
to control for the influence of day-of-week effects. It also 
adjusts for seasonal trends in exposure levels.21 The time-
stratified approach is not subject to bias resulting from time 
trends, because there is no pattern in the placement of refer-
ents relative to the index time.16,17,21

Study population
Our population comprised adults over the age of 18 years at 
the time of incidence of MI, living in Calgary and admitted to 
hospital with a diagnosis of MI during the study period from 
Jan. 1, 2004, to Dec. 31, 2012. Patients who died before 
presentation to an emergency department were excluded. The 
population was extracted by first acute MI diagnosis, 
including ST elevation MI and non–ST elevation MI.

Data sources
The Alberta Provincial Project for Outcome Assessment in 
Coronary Heart Disease (APPROACH) is a registry that 
captures all patients undergoing cardiac catheterization in the 
province of Alberta since Jan. 1, 1995 (www.approach.org). In 
2004, APPROACH expanded to include the Heart Alert 
initiative in southern Alberta, which enhances data collection 
by including detailed information on all patients admitted to 
cardiology services of acute care facilities in Calgary. The data 
collection is prospective and collected by trained clinical staff 
using standardized operating procedures and data definitions 
as part of the medical record in Alberta, and therefore, 
missing data on key variables are minimal.

Air pollution data were obtained from automated fixed-site 
continuous monitoring stations maintained by Environment 
and Climate Change Canada as part of the National Air 
Pollution Surveillance Network.22–24 The 3 stations were 
Calgary Central, Calgary East and Calgary Northwest, which 
are positioned to be representative of the background air 
pollution concentrations across Calgary. Hourly data from 
each of the 3 fixed sites were averaged together to provide 
regional estimates of hourly concentrations of the 6 criteria 
air pollutants investigated in this study: O3, NO2, SO2, CO, 
PM10 and PM2.5. Daily air pollution levels for Calgary were 
calculated from hourly records by averaging across the 3 
fixed-site monitoring stations.25 For all air pollutants, with the 
exception of ozone, daily mean exposure estimates were used. 
Ozone values were based on an 8-hour maximum value. In 
addition, Air Quality Health Index (AQHI) scores were calcu-
lated from a composition of 3-hour average values of O3, NO2 
and PM2.5 based on the following formula:26

AQHI = 1000/10.4 × [(e0.000871 × N0
2 – 1) + (e0.000537 × 0

3 – 1) + 
(e0.000487 × PM

2.5 – 1)]

Data for daily mean temperature and relative humidity 
were provided by Environment and Climate Change Canada, 
which averaged the hourly mean temperature and relative 
humidity across the 3 monitoring stations. These daily time 

Temporal analysis: case-crossover study design for the association
between daily air pollution levels and MI 
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Spatial analysis: case-crossover analysis stratified by low,
medium and high nitrogen dioxide levels in Calgary

 Total no. of matched risk sets  n = 6142  

Low NO2

n = 1660 (27.0%)
Medium NO2

n = 3088 (50.2%)
High NO2

n = 1384 (22.5%)

Figure 1: Study design for temporal and spatial analysis of air 
pollutants effect on hospital admission for myocardial infarction (MI). A 
time-stratified case-crossover study design that evaluates the short-
term (temporal) effect of O3, NO2, SO2, CO, PM10 and PM2.5 on MI. 
Analyses are stratified by high, medium and low levels of NO2 (spatial) 
as defined by land use regression estimates. Ten patients had missing 
data. Note: CO = carbon monoxide, NO2 = nitrogen dioxide, O3 = 
ozone, PM10 = particulate matter < 10 µm in diameter, PM2.5 = particu-
late matter < 2.5 µm in diameter, SO2 = sulfur dioxide. 
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series of meteorological data were linked with MI hospital  
admissions and used as adjustment factors in a multivariable 
conditional logistic regression model.

Land use regression (LUR) models have been widely used 
to assess the spatial variation of outdoor air pollution and to 
estimate fine scale pollution concentrations.27–30 Land use 
regression models capture longer-term measures of ambient 
air pollution rather than day-to-day fluctuations. Substantial 
intra-urban variation for NO2, PM2.5 and metals associated 
with PM10 has been observed in previous analyses conducted 
on air pollution with LUR models in Calgary.4,31 These 
previous studies suggest that the major contributors to the 
spatial variation of air pollution are emissions from motor 
vehicles and industrial sources,32 resulting in relatively higher 
air pollution along major traffic corridors and the Northeast 
Industrial area.4,5 The stability of LUR models over time has 
been previously validated.33 Further, the LUR model used in 
Calgary was shown to remain stable over a 5-year interval.34 
We used the NO2 estimates from the air pollution study 
reported by Bertazzon and colleagues for the study period.4 
Land use regression estimates were assigned to each patient 
based on the 6-digit postal codes of their residential locations, 
which we defined as their neighbourhood. Patients who were 
admitted to hospital for MI were then divided into tertiles 
based on ambient NO2 concentrations at their residential 
locations: low NO2 pollution (first tertile), medium NO2 
pollution (second tertile) and high NO2 pollution (third 
tertile) (Figure 2). Patients who were admitted to hospital for 
MI were assigned to only 1 of the 3 NO2 concentrations based 
on the 6-digit postal codes of their residential locations.

Statistical analysis
To evaluate the temporal relation between outdoor air 
pollution levels (O3, NO2, SO2, CO, PM10, PM2.5 and AQHI 
score) and presentation to hospitals because of MI, we 
constructed several different metrics: same-day exposure, 
1-day and 2-day lagged exposures and cumulative 3-day and 
5-day average exposure estimates. Correlation between 
pollutants was assessed using Pearson correlation 
coefficients. After matching the case period and referent 
periods, we used conditional logistic regression to produce 
risk estimates by comparing exposure data on case and 
control days. Odds ratios (ORs) with associated 95% 
confidence intervals (CIs) were calculated to describe the 
association between hospital admissions for MI and any 
increase in the interquartile range (IQR) of the daily 
concentrations of air pollutants during the different time 
intervals. We adjusted ORs for temperature and relative 
humidity.22,35 Temperature and relative humidity were 
entered as linear terms in the models. We verified the 
linearity of the relation using natural cubic spline functions. 
The AQHI score was also included in a separate model to 
explore the composite effects of air pollution on MI. Finally, 
each pollutant model (O3, NO2, SO2, CO, PM10, PM2.5 and 
the AQHI score) was stratified by an individual’s residential 
exposure to NO2 concentrations (stratified as high, medium 
and low, based on their 6-digit postal code), as derived from 

LUR models. Model stratification of high NO2 was compared 
with low NO2 concentration using a Cochran Q test.

Ethics approval
This study was approved by the University of Calgary’s 
Conjoint Health Research Ethics Board (CHREB) and the 
Health Canada-Public Health Agency of Canada Research 
Ethics Board. 

Results

We identified 6142 adult patients admitted to hospital for MI 
during the study period (Table 1). Of all patients who had an 
MI, 4482 (72.9%) were men, 3209 (52.2%) patients were aged 
65 years or younger, 1493 (24.3%) patients had diabetes and 
3646 (59.2%) patients were either a current or former 
smoker. When stratified by residential location, 1384 (22.5%) 
of patients who had an MI lived in neighbourhoods with the 
highest tertile of NO2 pollution. The distribution of air 
pollutants and their correlations are provided in Appendix 1, 
available at www.cmajopen.ca/content/8/4/E619/suppl/DC1.

Associations between short-term air pollution and MI are 
shown in Table 2. For the overall city-wide study popula-
tion, only 1-day lag for SO2 exhibited a significant positive 
association with admissions for MI (OR 1.05, 95% CI 1.01–
1.09 per IQR). Associations between short-term pollutant 
concentrations and MI were observed for those residing in 
neighbourhoods with the highest long-term concentrations 
of NO2. With the exception of O3, all pollutants were associ-
ated with MI in high NO2 areas with ORs ranging from 1.06 
to 1.20 per IQR. The strongest effect on hospital admissions 
for MI was identified for 5-day cumulative average of NO2 
(OR 1.20, 95% CI 1.03–1.40 per IQR) in high NO2 areas, 
whereas the association was not significant in low NO2 areas 
(5-day average NO2: OR 0.90, 95% CI 0.78–1.04, per IQR; 
Table 2). In high NO2 regions, the AQHI was significantly 
associated with MI (5-day average OR 1.13, 95% CI 1.02–
1.24 per IQR; 3-day average OR 1.13, 95% CI 1.04–1.23 
per IQR).

Interpretation

We evaluated the associations between air pollution and risk of 
hospital admissions for MI with a time-stratified, case-crossover 
study design. Our analysis was consistent with that of Wang and 
colleagues, who also explored the effects of air pollution on MI 
in Calgary.25 Neither that study nor ours identified strong tem-
poral effects of air pollution on MI when the spatial distribution 
of air pollution was assumed to be homogenous across the city 
of Calgary. The weak association between air pollution and MI 
in our non–spatially stratified analyses may partially be explained 
by the generally low air pollution concentrations in Calgary, 
where warning advisories were issued for less than 1% of days 
annually during our study period.36 Environment and Climate 
Change Canada reported in 2015 that air pollution (NO2, SO2, 
O3 and CO) had substantially improved, including in Calgary, 
from 1990 to 2015.37 In a small part, improved air quality in 
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Calgary may also explain the decreased incidence of hospital 
admissions for MI in Calgary, as observed by Liu and Bertazzon 
between 2004 and 2013.38

However, in our study, we also stratified our models by 
spatial distribution of NO2. Individuals living in regions of 
high NO2 exposure showed significant associations for all 

Low air pollution
(1st tertile)

Air pollution

Medium air pollution
(2nd tertile)

High air pollution
(3rd tertile)

Natural areas

Waterbodies

Continuous stations

Limit of populated area

Kilometers Data source: Open Calgary
0 5 10 20

Figure 2: Spatial distribution of nitrogen dioxide in the city of Calgary derived from land use regression estimates. Each dot represents the 
centroid of a 6-digit postal code with darker shading representing higher air pollution and lighter shading representing lower air pollution. 
Stars denote the 3 continuous monitoring stations in Calgary.
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individual pollutants and hospital admissions for MI with the 
exception of O3. Further, the AQHI score was also associated 
with hospital admissions for MI for patients living in areas 
with higher NO2 concentrations. These findings imply that 
living in a neighbourhood with elevated long-term exposure 
to NO2 may predispose residents of these areas to the acute 
effects of air pollution that are associated with an increased 
risk of MI. Alternatively, acute temporal spikes in air pollution 
levels across the city may be amplified in areas with higher 
baseline NO2. These results highlight the importance of 
accounting for spatial variation when studying the health 
effects of air pollution.

Associations between SO2 and MI are consistently reported 
in the literature. Mustafic and colleagues provide a systematic 
review concluding that SO2 was positively associated with 
increased incidence of MI.2 Our results also align with previ-
ous studies that report that O3 has no association with hospital 
admissions for MI.2,25,39 In addition, our results suggest that 
NO2 and PM2.5 levels are associated with increased MI in areas 
of medium NO2 (PM2.5 only) and areas of high NO2 (both 
NO2 and PM2.5); this is aligned with previous studies that find 
a positive association between MI and NO2 and PM2.5.2,35

The AQHI score, as a composite score indicating the 
overall air quality, did not exhibit a positive association with 
MI except in areas of high NO2. However, most evidence to 
date indicates that the effects of air pollution are linear, par-
ticularly for O3 and PM2.5, such that detection of effects is 
not dependent on infrequent days with high pollutant 

concentrations.40,41 The AQHI score is calculated based on the 
combination of NO2, O3 and PM2.5, of which O3 exhibited no 
significant associations with MI among either the entire study 
population or any subgroups, whereas NO2 and PM2.5 
exhibited significant associations in our spatial stratification.

Limitations
A limitation of our study was the use of fixed-site monitoring 
data as opposed to personal monitoring. Air pollution studies 
that rely on outdoor air pollution monitoring are subject to 
misclassification of the exposure (i.e., measurement error). 
For example, averaging measurements from the 3 fixed moni-
toring sites into 1 daily value for the city of Calgary may lead 
to air pollution exposure misclassification at the individual 
level. In addition, air pollution monitoring occurred outdoors, 
which does not account for differences of indoor air pollution 
exposure. Furthermore, fixed-site monitors do not account for 
individual mobility, as an individual may not have been near 
their home when they experienced an MI. The Canadian 
Human Activity Pattern Survey 2 was a national survey that 
showed that most individuals spent the day indoors and that 
seniors spent more than 80% of their time at or near their 
home.42 Typically, these errors in measurement result in 
nondifferential exposure misclassification, which serve to 
underestimate the risks of air pollution.20,43

The case-crossover study design of temporal associations 
controls for non–time dependent confounders; however, factors 
such as pollen that vary on a daily basis and may be correlated 

Table 1: Demographic characteristics of patients who were admitted to hospital for 
myocardial infarction in Calgary (2004–2012) 

Characteristic
No. (%) of patients

n = 6142

Sex

    Male 4482 (72.9)

    Female 1660 (27.0)

Age, yr

    ≤ 65 3209 (52.2)

    > 65 2933 (47.7)

Diabetes

    No diabetes 4649 (75.6)

    Diabetes 1493 (24.3)

Cigarette smoking

    Never smoker 2496 (40.6)

    Former smoker 1798 (29.2)

    Current smoker 1848 (30.0)

Residential location*

    Low NO2 air pollution (1st tertile) 1660 (27.0)

    Medium NO2 air pollution (2nd tertile) 3088 (50.2)

    High NO2 air pollution (3rd tertile) 1384 (22.5)

Note: NO2 = nitrogen dioxide.
*10 patients with missing data.
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Table 2: Association between air pollution and hospital admission for myocardial infarction with increases in the interquartile 
range of pollutants during various referent time intervals in regions with differing nitrogen dioxide pollution levels

Pollutant
(median with IQR) Lag (days)

OR* (95% CI)

Entire study 
population 

(citywide NO2)
 n = 6142

Low NO2 tertile
n = 1660

Medium NO2 tertile 
n = 3088

High NO2 tertile†
n = 1384

CO
(0.35, IQR 0.27–0.47)
 
 
 

0 index day 0.97 (0.93–1.02) 0.94 (0.88–1.01) 0.97 (0.92–1.02) 1.02 (0.95–1.09)

1-day lag 1.03 (0.98–1.08) 0.98 (0.92–1.05) 1.02 (0.97–1.07) 1.10 (1.02–1.18)

2-day lag 1.01 (0.96–1.06) 1.03 (0.96–1.10) 0.99 (0.94–1.04) 1.04 (0.97–1.12)

0- to 2-day average 1.01 (0.94–1.08) 0.97 (0.88–1.06) 0.99 (0.92–1.05) 1.09 (0.99–1.21)

0- to 4-day average 0.97 (0.90–1.05) 0.92 (0.83–1.03) 0.96 (0.88–1.03) 1.08 (0.96–1.21)

NO2

(18.22, IQR 12.67–25.00)
 
 
 

0 index day 1.00 (0.94–1.07) 0.97 (0.89–1.06) 1.01 (0.95–1.08) 1.05 (0.95–1.15)

1-day lag 1.04 (0.97–1.11) 1.00 (0.91–1.09) 1.01 (0.94–1.07) 1.16 (1.05–1.28)†

2-day lag 1.03 (0.97–1.10) 1.03 (0.94–1.12) 1.00 (0.93–1.06) 1.11 (1.01–1.22)

0- to 2-day average 1.05 (0.96–1.14) 1.00 (0.88–1.12) 1.01 (0.92–1.10) 1.20 (1.05–1.36)

0- to 4-day average 0.98 (0.88–1.08) 0.90 (0.78–1.04) 0.93 (0.84–1.03) 1.20 (1.03–1.40)†

O3 max
(39.00, IQR 32.00–47.00)
 
 
 

0 index day 1.00 (0.95–1.06) 1.02 (0.96–1.10) 0.98 (0.93–1.03) 1.03 (0.96–1.11)

1-day lag 0.99 (0.94–1.04) 0.96 (0.90–1.03) 0.97 (0.93–1.03) 1.07 (0.99–1.15)

2-day lag 0.99 (0.94–1.04) 0.97 (0.91–1.04) 0.99 (0.94–1.04) 1.02 (0.94–1.10)

0- to 2-day average 0.99 (0.93–1.06) 0.98 (0.90–1.07) 0.97 (0.91–1.03) 1.06 (0.96–1.17)

0- to 4-day average 1.00 (0.93–1.08) 1.00 (0.90–1.11) 0.97 (0.90–1.04) 1.09 (0.97–1.22)

SO2

(1.00, IQR 1.00–2.00)
 
 
 

0 index day 1.00 (0.96–1.05) 1.00 (0.95–1.06) 0.97 (0.93–1.01) 1.08 (1.02–1.15)†

1-day lag 1.05 (1.01–1.09) 1.03 (0.98–1.09) 1.04 (1.00–1.08) 1.10 (1.03–1.16)

2-day lag 1.04 (0.99–1.08) 1.04 (0.98–1.10) 1.03 (0.99–1.07) 1.05 (0.99–1.12)

0- to 2-day average 1.06 (1.00–1.12) 1.05 (0.97–1.14) 1.03 (0.97–1.09) 1.15 (1.06–1.25)

0- to 4-day average 1.05 (0.98–1.12) 1.05 (0.96–1.16) 1.02 (0.95–1.09) 1.10 (0.99–1.22)

PM10

20.00, IQR 14.00–30.00)
 
 
 

0 index day 0.98 (0.95–1.02) 0.95 (0.90–1.00) 0.98 (0.95–1.02) 1.03 (0.97–1.08)

1-day lag 1.01 (0.97–1.05) 0.97 (0.92–1.02) 1.01 (0.97–1.04) 1.06 (1.01–1.12)†

2-day lag 1.01 (0.98–1.05) 0.99 (0.95–1.04) 1.00 (0.96–1.04) 1.06 (1.00–1.12)

0- to 2-day average 1.00 (0.96–1.05) 0.95 (0.89–1.01) 0.99 (0.95–1.04) 1.08 (1.01–1.16)†

0- to 4-day average 0.99 (0.94–1.05) 0.95 (0.88–1.02) 0.98 (0.93–1.04) 1.07 (0.99–1.15)

PM2.5

(7.00, IQR 4.33–10.50)
 
 
 

0 index day 1.01 (0.98–1.05) 0.99 (0.94–1.05) 1.00 (0.97–1.04) 1.06 (1.00–1.11)

1-day lag 1.02 (0.99–1.06) 0.98 (0.93–1.03) 1.04 (1.01–1.08) 1.04 (0.99–1.10)

2-day lag 1.00 (0.96–1.04) 0.96 (0.90–1.01) 1.02 (0.97–1.06) 1.03 (0.98–1.08)

0- to 2-day average 1.02 (0.97–1.07) 0.96 (0.90–1.03) 1.03 (0.98–1.08) 1.07 (1.00–1.13)

0- to 4-day average 1.02 (0.97–1.08) 0.98 (0.91–1.06) 1.04 (0.99–1.10) 1.04 (0.96–1.12)

AQHI
(4.01, IQR 3.49–4.65)
 
 
 

0 index day 1.01 (0.96–1.05) 1.00 (0.94–1.06) 0.99 (0.95–1.04) 1.06 (0.99–1.13)

1-day lag 1.02 (0.97–1.07) 0.97 (0.91–1.03) 1.00 (0.96–1.05) 1.12 (1.05–1.20)†

2-day lag 1.01 (0.97–1.06) 0.99 (0.93–1.05) 1.00 (0.95–1.04) 1.07 (1.00–1.14)

0- to 2-day average 1.02 (0.96–1.08) 0.98 (0.90–1.06) 1.00 (0.94–1.05) 1.13 (1.04–1.23)†

0- to 4-day average 1.01 (0.94–1.08) 0.97 (0.89–1.07) 0.97 (0.91–1.04) 1.13 (1.02–1.24)†

Note: CI = confidence interval, CO = carbon monoxide, IQR = interquartile range, NO2 = nitrogen dioxide, OR = odds ratio, O3 = ozone, PM10 = particulate matter < 10 µm in 
diameter, PM2.5 = particulate matter < 2.5 µm in diameter, SO2 = sulfur dioxide.  
*Odds ratios are adjusted for temperature and relative humidity.
†Significant difference comparing OR in the highest NO2 tertile to the lowest NO2 tertile using the Cochran Q test. 
Significant associations are bolded. 
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to air pollution levels are not controlled in a case-crossover 
study design. Although temporally stable cardiac risk factors 
(e.g., hypertension, diabetes and dyslipidemia) are controlled, 
risk factors such as smoking that may vary from day to day 
(e.g., smoking only on the weekend) may introduce bias in the 
temporal analyses. In addition, our stratified spatial analysis 
based on residential NO2 exposure was subject to confound-
ing because high pollution areas may correspond with other 
risk factors for MI, such as low socioeconomic status and obe-
sity. For example, an individual with low socioeconomic status 
may live in proximity to major traffic arteries (i.e., higher air 
pollution) because these neighbourhoods have lower property 
value. Thus, the results of the current study should be inter-
preted cautiously without inference to causality. Further 
investigation on whether living in a high pollution area 
increases vulnerability to temporal spikes in pollution concen-
trations is necessary. 

Misclassification of the timing of onset of MI may intro-
duce bias into the results. In addition, the study was restricted 
to individuals who were admitted to hospital with MI; the 
study did not account for individuals who died out of hospital. 
Multiple comparison errors may account for some of the sig-
nificant associations observed and pollutants are often corre-
lated, leading to lack of independence, and thus, replication 
studies are necessary.

Conclusion
We evaluated the effects of increased air pollution on the 
increased odds of hospital admissions for MI by integrating 
spatial variation in air pollution derived from NO2 LUR mod-
els. Our results show that the effect of air pollution on MI was 
stronger in areas with higher NO2 concentrations than that in 
areas with lower NO2 concentrations. These results highlight 
the need for preventive strategies targeted specifically to pop-
ulations living in residential areas with higher traffic-related 
pollution, who should be advised of the health risks and to pay 
particular attention to special air quality statements.
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